やがてめぐになる

さんすうとえいごのおべんきょうブログ。ほかにもかきたいことをかきます。

Decomposition of matrices with the Pauli matrices

りょうしじょうほうで出てきたので整理するよ~

In this article, we introduce that any square matrix can be decomposed as the linear combination of the Pauli matrices.

Denote by  M_n(\mathbb{C}) the set of all square matrices of order  n\in\mathbb{N} whose components value on  \mathbb{C}.
Furthermore, we write the 3 Pauli matrices as
\begin{align*}
X =
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}, \quad
Y =
\begin{pmatrix}
0 & -i \\
i & 0
\end{pmatrix}, \quad
Z =
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}.
\end{align*}
The following assertion holds obviously:
Proposition.  M_2(\mathbb{C}) is a Hilbert space under the inner product; for  A,B\in M_2(\mathbb{C}),
\begin{align*}
\langle A, B \rangle_{M_2(\mathbb{C})} = \frac{1}{2} \textrm{Tr}(B^*A) = \frac{1}{2}\sum_{j=1}^2 \langle Ae_j, Be_j\rangle_{\mathbb{C}^2},
\end{align*}
where  \{e_1,e_2\} is an orthonormal basis of  \mathbb{C}^2. Moreover,  \{I,X,Y,Z\} forms an orthonormal basis of  M_2(\mathbb{C}).

Consequently, we get the following:
Theorem. Let  n\in\mathbb{N}. Then,  \mathcal{B}=\{\bigotimes_{j=1}^n\sigma_j \mid \sigma_j=I,X,Y,Z,~j=1,2,\dots,n\} forms an orthonormal basis of the tensor product Hilbert space  \bigotimes^n M_2(\mathbb{C}) \simeq M_{2^n}(\mathbb{C}). The members  \bigotimes_{j=1}^n\sigma_j \in \mathcal{B} are called  n-qubit Pauli matrices.

Thus, for any  A\in\bigotimes^n M_2(\mathbb{C}), we get the decomposition  A=\sum_{\sigma\in\mathcal{B}}\langle A, \sigma\rangle\sigma, where the inner product represents the one of  \bigotimes^n M_2(\mathbb{C}).