やがてめぐになる

さんすうとえいごのおべんきょうブログ。ほかにもかきたいことをかきます。

Is this estimate well-known?

Let  H be a separable Hilbert space and  \|\cdot\| represents the norm induced by the inner product  \langle\cdot,\cdot\rangle of  H, and let  A be a self-adjoint operator on  H bounded from below and  D(A) denotes the domain of  A.
Suppose  \lambda_0\in\mathbb{R} is an eigenvalue with multiplicity 1 attaining the value  \inf_{\|x\|=1}\langle Ax,x\rangle and  e_0\in H is the corresponding eigenvector with  \|e_0\|=1.

Proposition. If  \lambda_0 is an isolated point of the spectrum  \sigma(A) and  |\langle x, e_0\rangle - 1/2|\leq 1/2,  x\in D(A) with  \|x\|=1, then
\begin{align*}
\|x-e_0\|^2\leq 2\cdot \frac{\langle Ax,x\rangle - \lambda_0}{\lambda_1-\lambda_0},
\end{align*}
where  \lambda_1=\inf \{\lambda\in\sigma(A)\mid \lambda>\lambda_0\}.

Proof. Let  A=\int_{\mathbb{R}}\lambda dE(\lambda) be the spectral decomposition of  A. Then, for  x\in D(A) with  \|x\|=1,
\begin{align*}
\langle Ax,x\rangle - \lambda_0
&= \int \lambda d\langle E(\lambda)x,x\rangle - \lambda_0 \\
&= \lambda_0(|\langle x,e_0\rangle|^2-1) + \int_{\lambda>\lambda_0}\lambda d\langle E(\lambda)x,x\rangle \\
&\geq \lambda_0(|\langle x,e_0\rangle|^2-1) + \lambda_1 \int_{\lambda>\lambda_0}d\langle E(\lambda)x,x\rangle \\
&= \lambda_0(|\langle x,e_0\rangle|^2-1) + \lambda_1(1-|\langle x,e_0\rangle|^2) \\
&= (\lambda_1-\lambda_0)(1-|\langle x,e_0\rangle|^2).
\end{align*}
Since  |\langle x, e_0\rangle - 1/2|\leq 1/2 implies  |\langle x,e_0\rangle|^2\leq \textrm{Re}\,\langle x,e_0\rangle, we obtain
\begin{align*}
\|x-e_0\|^2
&=2(1-\textrm{Re}\,\langle x,e_0\rangle) \\
&\leq 2(1-|\langle x,e_0\rangle|^2) \\
&\leq 2\cdot \frac{\langle Ax,x\rangle - \lambda_0}{\lambda_1-\lambda_0}.
\end{align*}
It completes the proof.  \Box