やがてめぐになる

さんすうとえいごのおべんきょうブログ。ほかにもかきたいことをかきます。

マルコフ性のためのおべんきょう

In this article, some equalities are introduced for showing the Markov property of stochastic processes. After then, we demonstrate the Markov property of a geometric Brownian motion.

In what follows,  (\Omega,\mathcal{F},P) represents a probability space and the expectation under  P is denoted by  E[\cdot].
Proposition. Let  (\Omega_1,\mathcal{B}_1) and  (\Omega_2,\mathcal{B}_2) be measurable spaces,  f\colon \Omega_1\times\Omega_2\to \mathbb{R} be a bounded measurable function, and  \mathcal{G} be a sub  \sigma-field of  \mathcal{F}. If an  \Omega_1-valued r.v.  X is  \mathcal{G}-measurable and an  \Omega_2-valued r.v.  Y is independent of  \mathcal{G}, we have the following:
(1)  E[f(X,Y)|\mathcal{G}]=E[f(X,Y)|X]=E[f(x,Y)]\big|_{x=X}, a.s.
(2)  E[f(X,Y)|X=x]=E[f(x,Y)],  P_X-a.s.

Proof. Recalling the construction of integration in the general measure theory, we may assume that  f is the form  \boldsymbol{1}_\Gamma for  \Gamma\in\mathcal{B_1}\otimes \mathcal{B_2}. Furthermore, the Dynkin's  \pi\text{-}\lambda theorem allows  f(x,y) to be the form  \boldsymbol{1}_{A}(x)\boldsymbol{1}_B(y) for  A\in\mathcal{B_1},  B\in\mathcal{B_2}.
(1) Since  X is  \mathcal{G}-measurable and  Y is independent of  \mathcal{G}, we see
\begin{align*}
E[\boldsymbol{1}_A(X)\boldsymbol{1}_B(Y)|\mathcal{G}]
&= \boldsymbol{1}_A(X)E[\boldsymbol{1}_B(Y)] \\
&= E[\boldsymbol{1}_A(x)\boldsymbol{1}_B(Y)]\big|_{x=X}, \quad \text{a.s.}
\end{align*}
As for  E[f(X,Y)|X], it is followed by the same argument since  X is  \sigma(X)-measurable and  Y is independent of  \sigma(X).

(2) Suppose  C\in\mathcal{B}_1. Then, by the independence between  X and  Y, we see that
\begin{align*}
E[\boldsymbol{1}_A(X)\boldsymbol{1}_B(Y);X\in C]
&= E[\boldsymbol{1}_B(Y)]E[\boldsymbol{1}_A(X);X\in C] \\
&= \int_{C}P_X(dx) \boldsymbol{1}_A(x) E[\boldsymbol{1}_B(Y)].
\end{align*}
Thus, we obtain
\begin{align*}
E[\boldsymbol{1}_A(X)\boldsymbol{1}_B(Y)|X=x]
&= E[\boldsymbol{1}_A(x)\boldsymbol{1}_B(Y)], \quad \text{$P_X$-a.s.}
\end{align*}
We now complete the proof. □

Remark 1. We note that how to apply the Dynkin's  \pi\text{-}\lambda theorem in the proposition.
It is easy to see that
\begin{align*}
\mathcal{P} := \{A\times B~;~ A\in\mathcal{B}_1, B\in\mathcal{B}_2\}
\end{align*}
is a  \pi-system in  \Omega_1\times \Omega_2; that is,  \Omega_1\times \Omega_2\in\mathcal{P} and it holds  A \cap B \in \mathcal{P} for any  A,B\in\mathcal{P}.
Denote by  \mathcal{L} the collection of  A\in\mathcal{B_1}\otimes\mathcal{B}_2 satisfying
\begin{align*}
E[\boldsymbol{1}_A(X,Y)|\mathcal{G}]
&= E[\boldsymbol{1}_A(x,Y)]\big|_{x=X}.
\end{align*}
Then,  \mathcal{L} is a  \lambda-system; that is, all of the followings are fulfilled:

  •  \Omega_1\times\Omega_2\in\mathcal{L}.
  •  B\setminus A\in\mathcal{L} for any  A\subset B,  A,B\in\mathcal{L}.
  •  \bigcup_{n=1}^\infty A_n\in\mathcal{L} for any  A_1\subset A_2\subset\cdots,  A_1,A_2,\dots\in\mathcal{L}.

Then one can apply the Dynkin's theorem and get  \sigma(\mathcal{P})=\mathcal{B}_1\otimes\mathcal{B}_2=\mathcal{L}. The remainings are also shown in the same way as above.
Remark 2. The proposition above holds even if the assumption of  f is relaxed to that  f(X,Y) is integrable.
Remark 3. It can be seen directly that  \mathcal{L} is a  \sigma-field.

We now show the Markov property of a geometric Browinan motion.
Example. Let  X^x_t = xe^{\alpha t + \beta B_t}, where  (B_t)_{t\geq 0} is a Brownian motion starting at the origin, and let  f\colon\mathbb{R}\to\mathbb{R} be a bounded function. And  (\mathcal{F}_t)_{t\geq 0} denotes the Brownian filtration. By (1) of the proposition above, we get, for  s < t,
\begin{align*}
E[f(X^x_t)|\mathcal{F}_s]
&= E[f(xe^{\alpha s + \beta B_s}e^{\alpha (t-s) + \beta (B_t-B_s)})|\mathcal{F}_s] \\
&= E[f(ye^{\alpha (t-s) + \beta B_{t-s}})]\big|_{y=X^x_s} \\
&= E[f(X^y_{t-s})]\big|_{y=X^x_s},
\end{align*}
where, in the second equality, we use the fact that  B_t-B_s=B_{t-s} holds in distribution.