やがてめぐになる

さんすうとえいごのおべんきょうブログ。ほかにもかきたいことをかきます。

Lévy processのジャンプはいつまでも起き続ける

The following might be nontrivial so I will write down a proof.


Claim
Assume that the filtration  (\mathcal{F}_t)_{t\geq 0} satisfies the usual conditions. Let  (X_t)_{t\geq 0} be a Lévy process (with càdlàg sample paths) adapted to  (\mathcal{F}_t) and  \Lambda be a Borel set in  \mathbb{R} such that  0\notin \bar{\Lambda}. Define the random times
\begin{align*}
T^0_\Lambda &= 0, \\
T^{n}_\Lambda &= \inf\{t>T^{n-1}_\Lambda;\Delta X_t\in\Lambda\}, \quad n=1,2,\dots
\end{align*}
, where  \Delta X_t := X_t-X_{t-}. Then the followings hold:
(i)  T^n_\Lambda>T^{n-1}_\Lambda a.s. for  n=1,2,\dots
(ii) Every  T^n_\Lambda is an  (\mathcal{F}_t)-stopping time.
(iii)  \lim_{n\to\infty} T^n_\Lambda=\infty a.s.


Proof.
(i) Since  0\notin \bar{\Lambda},  d:=\inf\{|y|;y\in\Lambda\}>0 holds. Then  \Delta X_t\in\Lambda implies  |\Delta X_t|\geq d.
By right continuity of  X, there is a  \delta_1>0 such that
\begin{align*}
\left|X_t-X_{T^{n-1}_\Lambda}\right| \leq \frac{d}{6}
\end{align*}
for all  T^{n-1}_\Lambda < t < T^{n-1}_\Lambda+\delta_1.
For any  T^{n-1}_\Lambda < t < T^{n-1}_\Lambda+\delta_1, taking a sufficiently small  \delta_2 > 0 satisfying  T^{n-1}_\Lambda < t-\delta_2 < T^{n-1}_\Lambda + \delta_1 yields, by càdlàgness of  X,
\begin{align*}
\left| X_{t-{\delta_2}}-X_{T^{n-1}_\Lambda} \right|,|X_{t-{\delta_2}}-X_{t-}| \leq \frac{d}{6}.
\end{align*}
Thus, it holds that
\begin{align*}
\left|\Delta X_t\right|
&\leq |X_t-X_{T^{n-1}_\Lambda}| + |X_{t-{\delta_2}}-X_{T^{n-1}_\Lambda}| + |X_{t-{\delta_2}}-X_{t-}| \\
&\leq \frac{d}{6}+\frac{d}{6}+\frac{d}{6} = \frac{d}{2} < d.
\end{align*}
Then we obtain  T^n_\Lambda\geq T^{n-1}_\Lambda+\delta_1>T^{n-1}_\Lambda.

(ii) We use the result from Karatzas-Shreve; Proposition 2.26.
It holds for  t\geq 0, since  (\Delta X_t)_{t\geq 0} is  (\mathcal{F}_t)-adapted,
\begin{align*}
\{ T^n_{\Lambda} \leq t \}
&= \bigcup_{k_1,\dots,k_n\in\mathbb{N}} \bigcap_{j=1}^n \left( \{T_{k_j}\leq t\} \cap \{ \Delta X_{T_{k_j}}\in\Lambda \} \right) \\
&\in \mathcal{F}_t,
\end{align*}
where, by the proposition above,  (T_k)_{k\geq 1} is the sequence of stopping times exhausting the jumps of  X. Thus we see all  T^n_\Lambda are stopping times.

(iii) Assume that there is a  K>0 such that  T^n_\Lambda \leq K for all  n\geq 1. Then,  (T^n_\Lambda) is increasing and bounded. Thus,  T:=\lim_{n\to\infty}T^n_\Lambda\leq K exists.
By càdlàgness of  X, it follows  \lim_{n\to\infty}X_{T^n_\Lambda}=X_{T-}. Since  t\mapsto X_{t-} is left continuous, we get  \lim_{t\to\infty}X_{T^n_\Lambda-}=X_{T-}.
Hence,  |\Delta X_{T^n_\Lambda}|=|X_{T^n_\Lambda}-X_{T^n_\Lambda-}|\to 0 as  n\to\infty. However,  \lim_{n\to\infty}|\Delta X_{T^n_\Lambda}|\geq d. Those are contradiction.